CoreFlow: Extracting and Visualizing Branching Patterns from Event Sequences

نویسندگان

  • Zhicheng Liu
  • Bernard Kerr
  • Mira Dontcheva
  • Justin Grover
  • Matthew Hoffman
  • Alan Wilson
چکیده

Event sequence datasets with high event cardinality and long sequences are difficult to visualize and analyze. In particular, it is hard to generate a high level visual summary of paths and volume of flow. Existing approaches of mining and visualizing frequent sequential patterns look promising, but have limitations in terms of scalability, interpretability and utility. We propose CoreFlow, a technique that automatically extracts and visualizes branching patterns in event sequences. CoreFlow constructs a tree by recursively applying a three-step procedure: rank events, divide sequences into groups, and trim sequences by the chosen event. The resulting tree contains key events as nodes, and links represent aggregated flows between key events. Based on CoreFlow, we have developed an interactive system for event sequence analysis. Our approach can compute branching patterns for millions of events in a few seconds, with improved interpretability of extracted patterns compared to previous work. We also present case studies of using the system in three different domains and discuss success and failure cases of applying CoreFlow to real-world analytic problems. These case studies call forth future research on metrics and models to evaluate the quality of visual summaries of event sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clear Visual Separation of Temporal Event Sequences

Extracting and visualizing informative insights from temporal event sequences becomes increasingly difficult when data volume and variety increase. Besides dealing with high event type cardinality and many distinct sequences, it can be difficult to tell whether it is appropriate to combine multiple events into one or utilize additional information about event attributes. Existing approaches oft...

متن کامل

High Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences

Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...

متن کامل

Extracting Temporal Patterns from Interval-Based Sequences

Most of the sequential patterns extraction methods proposed so far deal with patterns composed of events linked by temporal relationships based on simple precedence between instants. In many real situations, some quantitative information about event duration or inter-event delay is necessary to discriminate phenomena. We propose the algorithm QTIPrefixSpan for extracting temporal patterns compo...

متن کامل

Hybrid Method of Logistic Regression and Data Envelopment Analysis for Event Prediction: A Case Study (Stroke Disease)

Abstract Predictive analytics is an area of statistics that deals with extracting information from data and using it to predict trends and behavior patterns. Many mathematical modeling has been developed and used for prediction, and in some cases, they have been found to be very strong and reliable. This paper studies different mathematical and statistical approaches for events prediction. The ...

متن کامل

Temporal Search and Replace: A novel tool to simplify event sequences in large complex temporal datasets

Visualizing and understanding large complex temporal datasets can be difficult and confusing because of the structure of events and event sequences. We introduce a novel Temporal Search and Replace tool that lets users easily and intuitively group and simplify related events sequences or repeated event patterns. The features in the tool were evaluated with a usability study of nine participants...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2017